Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
JHEP Rep ; 2(5): 100145, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32939447

RESUMO

BACKGROUND & AIMS: Liver stiffness is increased in advanced chronic liver disease (ACLD) and accurately predicts prognosis in this population. Recent data suggest that extracellular matrix stiffness per se may modulate the phenotype of liver cells. We aimed at investigating the effect of matrix stiffness on the phenotype of liver cells of rats with cirrhosis, assessing its influence on their response to antifibrotic strategies and evaluating associated molecular mechanisms. METHODS: Hepatocytes, hepatic stellate cells, and liver sinusoidal endothelial cells were isolated from healthy rats or rats with cirrhosis (carbon tetrachloride or thioacetamide), and cultured on polyacrylamide gels with different physiologically relevant stiffness for 72 h. RESULTS: All cell types of rats with cirrhosis cultured at low stiffness showed a significant phenotype amelioration vs. rigid matrix (assessed by quantitative morphology, mRNA expression, protein synthesis, and electron microscopy imaging). Additionally, stiffness modified the antifibrotic effects of liraglutide in stellate cells of rats with cirrhosis. Finally, evaluation of nuclear morphology revealed that high stiffness induced nuclei deformation in all cell types, an observation confirmed in cells from human livers. Disconnecting the nucleus from the cytoskeleton by cytoskeleton disruption or a defective form of nesprin 1 significantly recovered spherical nuclear shape and quiescent phenotype of cells. CONCLUSIONS: The environment's stiffness per se modulates the phenotype of healthy rats and liver cells of rats with cirrhosis by altering the nuclear morphology through cytoskeleton-derived mechanical forces. The reversibility of this mechanism suggests that targeting the stiffness-mediated intracellular mechanical tensions may represent a novel therapeutic strategy for ACLD. LAY SUMMARY: During cirrhosis, the liver becomes scarred, stiff, and unable to perform its normal functions efficiently. In this study, we demonstrated that cells from diseased (stiff) livers recovered their functionality when placed in a soft environment (as that of a healthy liver). Furthermore, treatments aimed at tricking liver cells into believing they are in a healthy, soft liver improved their function and could potentially contribute to treat cirrhosis.

3.
iScience ; 23(3): 100907, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32106057

RESUMO

The link between integrin activity regulation and cellular mechanosensing of tissue rigidity, especially on different extracellular matrix ligands, remains poorly understood. Here, we find that primary mouse mammary gland stromal fibroblasts (MSFs) are able to spread efficiently, generate high forces, and display nuclear YAP on soft collagen-coated substrates, resembling the soft mammary gland tissue. We describe that loss of the integrin inhibitor, SHARPIN, impedes MSF spreading specifically on soft type I collagen but not on fibronectin. Through quantitative experiments and computational modeling, we find that SHARPIN-deficient MSFs display faster force-induced unbinding of adhesions from collagen-coated beads. Faster unbinding, in turn, impairs force transmission in these cells, particularly, at the stiffness optimum observed for wild-type cells. Mechanistically, we link the impaired mechanotransduction of SHARPIN-deficient cells on collagen to reduced levels of collagen-binding integrin α11ß1. Thus integrin activity regulation and α11ß1 play a role in collagen-specific mechanosensing in MSFs.

4.
Nat Rev Mol Cell Biol ; 20(8): 457-473, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182865

RESUMO

Integrins, and integrin-mediated adhesions, have long been recognized to provide the main molecular link attaching cells to the extracellular matrix (ECM) and to serve as bidirectional hubs transmitting signals between cells and their environment. Recent evidence has shown that their combined biochemical and mechanical properties also allow integrins to sense, respond to and interact with ECM of differing properties with exquisite specificity. Here, we review this work first by providing an overview of how integrin function is regulated from both a biochemical and a mechanical perspective, affecting integrin cell-surface availability, binding properties, activation or clustering. Then, we address how this biomechanical regulation allows integrins to respond to different ECM physicochemical properties and signals, such as rigidity, composition and spatial distribution. Finally, we discuss the importance of this sensing for major cell functions by taking cell migration and cancer as examples.


Assuntos
Movimento Celular , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Adesão Celular , Membrana Celular/metabolismo , Membrana Celular/patologia , Humanos , Neoplasias/patologia
5.
Cell ; 171(6): 1397-1410.e14, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29107331

RESUMO

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Camundongos , Fatores de Transcrição , Transcrição Gênica , Proteínas de Sinalização YAP
6.
Sci Rep ; 6: 28261, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321784

RESUMO

Trachoma is a conjunctiva scarring disease, which is the leading infectious cause of blindness worldwide. Yet, the molecular mechanisms underlying progressive fibrosis in trachoma are unknown. To investigate the contribution of local resident fibroblasts to disease progression, we isolated conjunctival fibroblasts from patients with scarring trachoma and matching control individuals, and compared their gene expression profiles and functional properties in vitro. We show that scarring trachoma fibroblasts substantially differ from control counterparts, displaying pro-fibrotic and pro-inflammatory features matched by an altered gene expression profile. This pro-inflammatory signature was exemplified by increased IL-6 expression and secretion, and a stronger response to macrophage-mediated stimulation of contraction. We further demonstrate that scarring trachoma fibroblasts can promote Akt phosphorylation in macrophages in an IL-6 -dependent manner. Overall this work has uncovered a distinctive molecular fingerprint for scarring trachoma fibroblasts, and identified IL-6- as a potential contributor to the chronic conjunctival fibrosis, mediating reciprocal pro-fibrotic/pro-inflammatory interactions between macrophages and fibroblasts.


Assuntos
Cicatriz/metabolismo , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Tracoma/metabolismo , Cicatriz/patologia , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Feminino , Fibroblastos/patologia , Fibrose , Humanos , Macrófagos/patologia , Masculino , Tracoma/patologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...